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Past Future

Qualitative Results on Human 3.6M Dataset

• We proposed an action-agnostic model for both short-term and long-

term forecasting. 

• Our model was trained in the velocity space. 

• Our Triangular-Prism RNN outperforms the previous state-of-the-art.

Conclusion

Action-Agnostic Human Pose Forecasting
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Past pose sequence Future pose sequence

Input Output

Given the past pose sequence as the input, we would like to forecast the future pose sequence. 

Perform well on both short-term and 

long-term forecasting

No dependence on action labels, which 

are unavailable in real-world scenarios

Action labels

Human Pose 

Forecasting

Past poses
Future poses

Unlike previous works, we would like to build a model that does not require action labels while 

performing well for both short-term and long-term forecasting simultaneously.
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Importance of each component
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Compromise Between Deeper 

Hierarchical Structure and Performance

Model Architecture Parameters:

1. K: Scale

2. M: Number of hierarchical levels

The channels in each hierarchy share 

the same weights.

Penn Action Dataset: Evaluated Using the Percentage of Correct Keypoints (PCK)

Future Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Residual 82.4 68.3 58.5 50.9 44.7 40.0 36.4 33.4 31.3 29.5 28.3 27.3 26.4 25.7 25.0 24.5

3D-PFNet 79.2 60.0 49.0 43.9 41.5 40.3 39.8 39.7 40.1 40.5 41.1 41.6 42.3 42.9 43.2 43.3

TP-RNN w/o init vel. 82.3 68.9 61.5 56.9 53.9 51.7 50.0 48.5 47.3 46.2 45.6 45.0 44.6 44.3 44.1 43.9

TP-RNN w/ init vel. 84.5 72.0 64.8 60.3 57.2 55.0 53.4 52.1 50.9 50.0 49.3 48.7 48.3 47.9 47.6 47.3
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Penn Action Dataset: PCK@0.05 at future timesteps

Residual(Martinez et al.) 3D-PFNet(Chao et al.) TP-RNN w/o init vel. TP-RNN w/ init vel.

Design Intuitions:

• Human motions have hierarchical  

and multi-scale structures.

• Velocity information can be used to 

better predict the future.

Model Design Components:

• Hierarchical structures

• Multi-scale structures

• Multi-phase structure for data 

augmentation

• Velocity space operations

Human 3.6M Dataset: Evaluated Using the Mean Angle Errors (MAE), AA: Action-Agnostic

AA 80ms 160ms 320ms 400ms 560ms 1000ms

Residual (short)  0.36 0.67 1.02 1.15 - -

Residual (short)  0.39 0.72 1.08 1.22 - -

Residual (long)  0.43 0.75 1.11 1.24 1.42 1.83

Residual (long)  0.42 0.73 1.09 1.23 1.42 1.84

Zero-velocity - 0.40 0.71 1.07 1.21 1.42 1.85

TP-RNN (Ours)  0.37 0.66 0.99 1.11 1.30 1.71
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Human 3.6M Dataset: Average MAE over all 15 actions
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